
Filtering False Alarms of Buffer Overflow Analysis
Using SMT Solvers

Youil Kima, Jooyong Leeb, Hwansoo Han∗,c, Kwang-Moo Choea

aDepartment of Computer Science, KAIST
bDepartment of Computing and Information Sciences, Kansas State University

cDepartment of Computer Engineering, Sungkyunkwan University

Abstract

Buffer overflow detection using static analysis can provide a powerful tool for software
programmers to find difficult bugs in C programs. Sound static analysis based on abstract
interpretation, however, often suffers from false alarm problem. Although more precise
abstraction can reduce the number of the false alarms in general, the cost to perform
such analysis is often too high to be practical for large software. On the other hand,
less precise abstraction is likely to be scalable in exchange for the increased false alarms.
In order to attain both precision and scalability, we present a method that first applies
less precise abstraction to find buffer overflow alarms fast, and selectively applies a more
precise analysis only to the limited areas of code around the potential false alarms. In
an attempt to develop the precise analysis of alarm filtering for large C programs, we
perform a symbolic execution over the potential alarms found in the previous analysis,
which is based on the abstract interpretation. Taking advantage of a state-of-art SMT
solver, our precise analysis efficiently filters out a substantial number of false alarms. Our
experiment with the test cases from three open source programs shows that our filtering
method can reduce about 68% of false alarms on average.

Key words: buffer overflow, program analysis, false alarm, SMT solver

1. Introduction

When a program accesses a memory address which is beyond the legal limits of data,
we call this access a buffer overflow. Array type data and dynamically allocated data
have their own bounds, but programming languages such as C do not check the bound-
ary trespasses for the performance reason. The responsibility to write a correct code
is on programmers for such programming languages. In C programs, however, pointer
arithmetic operations often accidentally allow programs to access the content of memory

∗Corresponding author: Hwansoo Han, Dept. of Computer Engineering, Sungkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea

Email addresses: youil.kim@arcs.kaist.ac.kr (Youil Kim), jlee@cis.ksu.edu (Jooyong Lee),
hhan@skku.edu (Hwansoo Han), choe@kaist.ac.kr (Kwang-Moo Choe)

Preprint submitted to Information and Software Technology November 30, 2009

beyond the boundaries without any immediate exceptions. Those illegal accesses could al-
ter the important contents near the buffers and even the return addresses. Consequently,
buffer overflows often lead to many software bugs and serious security holes. Some of the
bugs remain undetected even after extensive tests with many dynamic debugging tools.
According to the NIST ICAT vulnerability database, buffer overflow defects account for
roughly a third of all the severe remotely exploitable vulnerabilities [20].

In detection of buffer overruns, static analysis tools have several advantages over dy-
namic detection tools. In dynamic tools, we often need to instrument programs with
buffer-overrun checks and run them with test inputs. Since the test inputs rarely rep-
resent all the possible execution scenarios we may encounter in real environments, some
of the execution scenarios could remain untested. In contrast, static tools are relatively
easy to test almost all the execution scenarios. Since they require no real execution with
real inputs, sound static tools can even take account of all the possible execution paths
with all the possible inputs. Static tools, however, could report too many false alarms
due to their overly aggressive abstractions.

In this work, we develop a scalable and yet precise static analysis for the buffer
overflow detection in C programs. We design a sound analyzer, which can catch all the
possible buffer overflow defects. At the same time, we make our analyzer precise enough
to filter out a large portion of the false alarms. The main technique we use is to change
the abstraction level only within partial regions of code and filter out the false alarms.

Several works already investigate the static analysis for detecting buffer overflow bugs.
Existing works such as BOON [17], Splint [8] and ARCHER [19] can detect buffer overflow
relatively fast, but they use unsound techniques, whereas our analyzer uses a sound
analysis. In addition, our analyzer requires no annotation of source code, whereas Splint
and CSSV [6] require annotations from users. The C Global Surveyor from NASA [16]
is an example of efficient sound analyzers but this is heavily tuned to a particular family
of NASA software. Since our target applications are open source C applications, we take
a general approach to handle quite a large spectrum of applications.

The base analyzer of our buffer overflow detector is based on the abstract interpreta-
tion [3], which guarantees that our analyzer can provide a sound analysis framework. Due
to the nature of the abstract interpretation, we frequently need to struggle with a large
number of false alarms, which often outnumbers real bugs. Reducing the number of false
alarms has been one of the highly interesting tasks among the abstract interpretation
community. A traditional approach to reduce the number of false alarms is to employ
more precise abstract domains. For example, the abstraction with convex polyhedral
domains generally leads to less false alarms than with interval domain. Although more
precise analysis could reduce the number of false alarms, the time spent on such analysis
tends to increase instead.

In order to reduce the false alarms of our base analyzer, we take advantage of a
state-of-the-art SMT solver and filter out improbable alarms. Each access to a buffer,
whether it is accessed through an element of an array or a pointer, is checked if the access
occurs within the buffer bound. Such checks are usually described as linear arithmetic
expressions on the integer domain. Since recent SMT solvers such as Yices [2] are quite
good at solving linear arithmetic problems, we translate the alarm statement and its
related code into the SMT formulae and solve the linear arithmetic formulae to find out
the alarm is improbable. If the alarm condition is proved to be improbable, we can filter
out the alarm.

2

2nd Phase: False Alarm Filter
1st Phase: Buffer Overflow Analyzer (Raccoon)Points-toAnalysis ValueAnalysis BufferAnalysis Buffer Overflow AlarmsSymbolic Execution SMT Translation Program Snippet Extraction

C CodeReduced Alarms
Figure 1: Two phase buffer overflow analysis: buffer overflow analyzer and false alarm
filter. The first phase is composed of three analyses for our buffer overflow analyzer,
Raccoon [11]. The second phase performs alarm filtering with three steps.

This paper is organized as follows. First, we present the high level overview on our
filtering method and describe the idea using an example code. Next, we describe how we
use the SMT solver for filtering purpose along with the complete set of translation rules
for the SMT formulae. Then, we present our experimental results on test benchmarks.
Finally, we discuss related works and conclude our paper.

2. Overview of Filtering False Alarms

After investigating several open source applications, we notice that most parts of
the code can be verified with relatively imprecise analysis and only small fragments of
the code actually need expensive but precise analysis. To attain both scalability and
accuracy in static analysis, our approach is that we apply precise analysis techniques
only to the limited parts of the code where those techniques are beneficial, while we
employ aggressive abstractions for the rest of the code.

According to the key idea, we designed a two phase buffer-overflow analysis. The high
level structure of the whole system is shown in Figure 1. In order to detect buffer-overflow
defects effectively, we begin with a cheaper and imprecise analysis based on abstract
interpretation. As a result, we often get many false alarms from the first analysis. Then,
we apply a precise symbolic execution technique based on a state-of-art SMT solver to
small areas of the code around the alarms where we can verify if those alarms are false
positives.

2.1. The First Phase: Buffer Overflow Analysis
The components within the buffer overflow analyzer shown in Figure 1 represent three

analyses that Raccoon [11], our base analyzer, performs for the buffer overflow detection.
First, we use a unification-based flow-insensitive and context-insensitive points-to anal-
ysis [5] to efficiently resolve pointers to scalar variables or functions. Then, the interval
analysis [3] based on abstract interpretation analyzes the possible values for an integer

3

l2

l3

r2
r2

∨

r1 r1
r1

α α
α

∨

α

∨

l1

r3

Figure 2: An example of linearized contexts: the alarm to test is located outside the loop

variable and represent them as a pair of minimum value and maximum value. Finally,
we compute the detailed information including the buffer bounds of pointer variables.
We separately perform three dedicated analyses one by one, rather than analyzing all
the information at the same time. We believe such separate execution will be advanta-
geous to minimize the footprint of memory usage, while we keep the precision loss to a
minimum. We developed Raccoon to perform a fast point-to and interval analysis for C
programs. It has been implemented in Objective Caml by extending the CIL compiler in-
frastructure [14], which handles the full set of ANSI C syntax with GNU C Compiler and
Microsoft Visual C extensions. Our experiments with several open source applications
show that Raccoon can finish the three analyses within a hundred of seconds for code
with a ten thousand lines. Moreover, it can prove about half of the array and pointer
accesses are actually free of buffer overflow (i.e. safe).

2.2. False Alarms of Raccoon
Racoon can prove the safety for a large number of buffer accesses, but still produces

many false alarms due to the aggressive abstraction in its buffer overflow analysis. One
of the primary reasons why Racoon produces many false alarms is the way it handles
loop statements. Most static analyzers based on abstract interpretation often exploit
widening and narrowing operations [3] for the acceleration and termination guarantee of
their analyses. The narrowing operations, however, often fail to recover the imprecision
introduced by the widening operations. Relational analysis could help alleviate such
inaccuracies that are originated by widening operations in loop statements, but even a
powerful polyhedral analysis [4] is incapable of handling all the complex loop statements.

Another primary reason for false alarms is the way Raccoon performs its analysis.
Separate execution of each analysis can help reduce the memory usage, but the infor-
mation to be generated from the next analysis cannot be used in the current analysis.
During the value analysis, for example, Raccoon cannot exploit the information about
pointers and maximum lengths of strings. We believe that the separate execution of anal-
yses contributes to the reduced analysis time mainly due to the small memory usage, but
it may cause more false alarms.

2.3. The Second Phase: Filtering False Alarms
Since false alarms are inevitable particularly in fast static analyses, reducing false

alarms by all means is necessary to make static analyses useful. To detect false alarms,
4

isFalseAlarm outLoop(ctxt, i)
(when alarm exists outside the loop)

1: if sat(ctxt ∧ li ∧ lei) then
2: return DONT KNOW
3: else if sat(ctxt ∧ ri) then
4: nctxt = ctxt ∧ ri

5: isFalseAlarm outLoop(nctxt, i + 1)
6: else
7: return YES
8: end if

isFalseAlarm inLoop(ctxt, i)
(when alarm exists inside the loop)

1: if sat(ctxt ∧ ri ∧ re
i) then

2: return DONT KNOW
3: else if sat(ctxt ∧ ri) then
4: nctxt = ctxt ∧ ri

5: isFalseAlarm inLoop(nctxt, i + 1)
6: else
7: return YES
8: end if

Figure 3: Loop handling algorithm: Functions isFalseAlarm outLoop() and
isFalseAlarm inLoop() return YES if all the alarms in a given program snippet are
false positives and return DONT KNOW if there exists a potentially real error. Depend-
ing on the location of the alarm to test, the appropriate function is used. Function sat()
decides the satisfiability of the formula given as its parameter.

we design the second phase of our buffer overflow analysis. By performing a precise
symbolic execution over the limited areas of code around alarms, we can filter out a
substantial number of false alarms.

In the following algorithm sketch, we describe how our false alarm filtering works.
For each alarm statement, we perform the following steps to examine the alarm.

• Step 1. Extract the relevant program snippet. The relevant program snip-
pet of the given alarm statement is the backward program slice [18], which is
constructed starting from the alarm statement and all the way back to the state-
ment where the array or pointer access under the examination is safely allowed. To
limit the area of code snippet, we restrict our backward slice only to grow back to
the beginning of the current procedure. If buffer accesses are not safe even after
we extended its backward slice to the beginning of the procedure, we abort the
examination for the alarm.

• Step 2. Build initial context formulae. During the backward slicing for the
extraction of the relevant program snippet, the slice could stop growing at the state-
ment where all the initializations of the needed variables are not reached yet. Since
we use two stop conditions to backward slicing, the slice can stop growing when it
finds the buffer access under examination is safe or it encounters the beginning of
the current procedure. As a result, live-in variables to the program snippet require
their initial values in order to perform symbolic execution. The initial context for
such live-in variables can be constructed from the interval results from the first
phase, our buffer overflow analysis. For example, a variable i at the beginning of
the relevant program snippet has an interval [0, 10] as a result of the first phase
analysis. This interval can be converted to a formula, (0 < i)∧ (i < 10), since the
interval actually represents that the minimum value of i is 0 and the maximum
value of i is 10.

• Step 3. Translate the relevant program snippet into SMT formulae. We
5

convert the relevant program snippet into a single static assignment form, then we
translate the SSA form into SMT formulae. Thanks to the expressiveness of SMT
formulae, translation rules are straightforward in most cases. If we encounter a
statement which cannot be translated to SMT formulae, we mimic the statement
by using the interval results of the first phase analysis. For example, we currently do
not translate bitwise operations into SMT formulae. However we have implemented
abstract versions of such bitwise operations in Raccoon, Raccoon’s analysis results
often suggest more precise constraints after bitwise operations. A procedure call
is another example that need to be mimicked instead of performing the symbolic
execution for the procedure body. In other words, we supply the SMT formulae
with the resulting intervals of the procedure call, which is taken from the first phase
analysis. The complete translation rules are presented in Section 4.

• Step 4. Symbolic execution of the relevant program snippet over an
SMT solver. If the relevant program snippet is just a sequence of simple ex-
pressions, all we need to do is to verify the satisfiability for the conjunction of the
initial context formulae, translated formulae for the relevant program snippet, and
the error constraint at the alarm statement. For loop statements, however, we need
a systematic way to construct all feasible execution paths. Our filtering phase uses
a continuous loop unrolling technique to handle loop statements. The key idea of
our unrolling is to linearize each execution path context one by one. The unrolling
in our paper does not mean the loop transformation, which is used to increase the
instruction level parallelism, but the resulting body of the loop has a similar form
of our. The difference in ours is that we have to continuously unroll one iteration
by one iteration until we reach to the upper bound of loop iteration condition and
evaluate the all the possible execution paths of a loop. Figure 2 shows an example
of linearized contexts. In Figure 2, α, li, and ri represent the initial context, the
leaving path context, and the remaining path context, respectively. The remaining
path context represents the loop remaining condition plus the execution of loop
body. The leaving path context represents the loop exit condition plus the state-
ments outside the loop up to the statement right before the alarm statement. The
i, where i ∈ N and N is the number of iterations for the loop, represents the ith
iteration. Thus, the formula, li, represents the constraint that can be satisfiable
when the loop is exited at the condition check before ith iteration. The formula,
ri, represents the constraint when the ith iteration is executed. The formulae,
lei and re

i , in Figure 3 are the error conditions when the alarm statement under
investigation is executed along the execution paths of li and ri, respectively.

• Step 5. Filtering a false alarm

• Step 5a. Loop handling when the alarm is outside the loop. As shown in
the algorithm on the left side of Figure 3, we can examine the given alarm statement
along each piece of the linearized context, which is virtually the same as executing
all the possible iterations of the loop. For an example, if the conjunction formula
for the leaving path, α ∧ l1 ∧ le1, is satisfiable, this means the error condition, le1,
can be realized along the context α ∧ l1. Thus, the alarm cannot be a false one.
If there is a possibility of true alarm, the filtering analysis for this alarm stops
without pursuing further investigation. Otherwise, the remaining path constraint,

6

302: count = lseek(tape, count, whence);
303: if (count < 0)
304: goto ioerror;
305:
306: p = count_string + sizeof(count_string);
307: *--p = ’\0’;
308: do
309: *--p = ’\0’ + (int)(count % 10);
310: while ((count /= 10) != 0);

Figure 4: A code snippet from rmt.c in GNU tar 1.13

r1 is added to the iteration context, α ∧ r1. If the added context is satisfiable, we
recursively examine the next loop iteration. If the loop cannot be iterated further
at the current iteration (i.e., ctxt∧ ri is unsatisfiable), we have reached the end of
loop iteration after executing all the possible number of iterations without finding
any feasible error condition. Thus, we decide the alarm is false.

• Step 5b. Loop handling when the alarm is inside the loop. As shown in
the algorithm on the right side of Figure 3, we examine the constraint including
the error condition, α ∧ r1 ∧ re

1. If we find this formula is satisfiable, an error can
be realized at the first iteration. Thus, this alarm is not a false alarm. We stop
exploring the next iterations. Otherwise, we recursively examine the next iteration.

Note that we cannot conclude that the given alarm is a real error, when the error
constraint is satisfiable. Although we do not use any abstraction in SMT translation
and symbolic execution, the initial context formulae from the first phase analysis, buffer
overflow analysis, may be over-approximated ones, which already contain infeasible states
from the beginning. Thus, the symbolic execution of our filtering analysis still could find
a satisfiable execution path for a false alarm.

3. A Concrete Example

In this section, we provide the detailed description of our false alarm filtering with
the example shown in Figure 4. The example code is excerpted from rmt.c in GNU tar
1.13. When we ran our buffer overflow analyzer on this file, rmt.c in GNU tar 1.13,
our analyzer produces a buffer underflow alarm at line 309. The reason for the reported
alarm is that the size of the buffer is 64, while the possible values of offset lie in the
interval [−∞, 62].

• Step 1. Extracting a relevant program snippet. At the first step of our
filtering analysis, we need to select a program snippet which is relevant to the alarm
statement to test. When we feed the file rmt.c of GNU tar program, our buffer
overflow analysis finds multiple potential buffer overflow alarms. The example code
in Figure 4 has two memory references through pointers. The statements at line
307 and line 309 are the main targets for our buffer overflow analyzer to test. After

7

performing points-to analysis, value analysis and buffer analysis in order, Raccoon,
our buffer overflow analyzer, finally decides that the statement at line 307 is a safe
access within buffer. Whereas, our analyzer decides that the statement at line 309
is potentially an out of range access and issues an alarm for the statement. Starting
from the statement at line 309, our filtering analysis tracks the relevant program
snippet. By using program slicing with slicing criterion (309, p), our analysis
decides that the statements from line 308 to line 310 are the relevant program
snippet to the alarm statement.

• Step 2. Building an initial context formulae. To perform symbolic execution
for the extracted program snippet, we need value information for the live-in vari-
ables. The information about those scalar and pointer variables are available from
the first phase analysis, buffer overflow analysis. Available information is stipulated
as quantifier-free first-order logic. In our example, the information about variable
p and count is stipulated as follows:

– The initial context α:

(p.offset0 = 63) ∧ (p.size0 = 64) ∧ (0 ≤ count0 ≤ LONG MAX)

To distinguish each occurrence of the same variable in SMT formulae, we rename
the variable by adding different subscripts to the variable. Our renaming scheme
is actually similar to that of static single assignment (SSA) transformation. The
information for a scalar variable is given as an interval, minimum and maximum
values. Meanwhile, the information for a pointer variable is a pair of two intervals:
one for offset and the other for size. In the above SMT formulae, we specify the
offset and the size of a pointer variable, p with an integer value each, but the
actual information from the buffer overflow analysis is given as an interval for each.
The value of p.size represents the allocated bytes of the buffer referenced by the
pointer variable p. The pointer variable p could point to any position between the
beginning and the end of the data. The value of p.offset represents the exact
position of the data to which the pointer variable p points. Considering that the
value of p.offset can start from zero, we represent the fact that the pointer variable
p points to the last element of a buffer the size of which is 64 bytes long.

• Step 3, 4. Translation into SMT formulae and symbolic execution. The
loop located at line 308 through line 310 is unrolled enough number of times so
that all the execution paths for the loop can be considered. To accomplish the loop
unrolling, the remaining path conditions are asserted along with other assertions
imposed by the loop body statements. For example, line 310 of Figure 4 imposes
an assertion (count1 6= 0) for the remaining path at the first iteration of the loop;
other assertions for leaving path contexts and remaining path contexts at various
iterations are as follows:

– leaving path context li at the i-th iteration:

(counti = 0)

8

– remaining path context ri at the first iteration (i = 1):

∧(p.offset1 = p.offset0 − 1) ∧ (count1 = count0/10)
∧(d(p.base0 + p.offset1) = 48 + count0%10)

– remaining path context ri at the i-th iteration:

(counti−1 6= 0)
∧(p.offseti = p.offseti−1 − 1) ∧ (counti = counti−1/10)

∧(d(p.base0 + p.offseti) = 48 + counti−1%10)

Pointer dereferences are translated with the uninterpreted function d which is an
element of our SMT formulae. After the loop is unrolled enough number of times,
the remaining path condition cannot be satisfied anymore. Intuitively, the loop
execution procedure unrolls the loop until such inconsistency is found by the SMT
solver.

• Step 5. Filtering a false alarm. By investigating the reachability to error
states from initial states, we check if a given alarm is genuine or not. If error states
are not reachable, the given alarm is a false positive. In our example, the alarm
statement at line 309 is on one of the remaining paths, an error constraint formula
lei on an execution path li should be false. An error state on the remaining paths
should satisfy the following assertions:

– error constraint re
1 on the execution path r1:

((p.offset1 ≥ p.size0) ∨ (p.offset1 < 0)) ∧ (p.offset1 ≤ 62)

– error constraint re
i on the execution path ri:

((p.offsetn ≥ p.size0) ∨ (p.offsetn < 0)) ∧ (p.offsetn ≤ 62)

The first conjunct asserts such condition that the pointer access by p is safe. The
second conjunct confines a set of the error states by taking advantage of the result
from the previous buffer overflow analysis, which dictates the interval of p.offset
is [−∞, 62].

Finally, with the formulae listed in the above, α, li, ri, lei and re
i , the procedure

isFalseAlarm inLoop(α, 0) in Figure 3 returns YES after unrolling the loop 18
times, and thus the given alarm can be filtered out.

4. Transforming C Program Snippets into SMT Formulae

In this section, we explain how we can translate C program snippets into SMT formu-
lae. We used the CIL infrastructure [14] to implement our analyzers. The CIL features
a reduced number of syntactic and conceptual forms. Several ANSI-C syntactic state-
ments are translated into equivalent ones during the CIL transformation. For example,
all looping constructs (i.e., for, while, do-while) are converted to a single form. The
CIL expressions have no side effects. In other words, the side effects occur only with
assignment statements.

9

4.1. Extraction of Relevant Program Snippet
A program snippet relevant to an alarm is basically a backward program slice con-

structed from that alarm statement. In many cases, we do not need a complete program
slice to prove the safety of a buffer access under investigation. We force a relevant pro-
gram snippet to begin with the point where the target buffer can be accessed safely. In
other words, we track back to the point where we can prove that the target buffer access
is safe only with the information from the first phase analysis. Moreover, we prohibit
the extraction process from tracking back beyond the procedure boundary. If a target
buffer access is still unsafe at the entry of the current procedure (that directly contains
the target alarm), we decide not to apply our filtering analysis for that alarm statement.
If we allow to track the relevant statements beyond the program boundaries, we may end
up with multiple program snippets for an alarm statement. Since the current procedure
may be called from multiple call sites, the back-tracking process would produce multiple
program snippets along the different call sites. In such situation, our alarm filtering
phase may need to investigate too many program snippets. To avoid such implications
and their overhead, we limit the range of the relevant statement tracking within the
current procedure.

4.2. Alarm Grouping
When multiple alarms share the same program snippet, we can reduce the analysis

time of the filtering phase by analyzing those alarms all together simultaneously. Our
alarm grouping is performed with the following two heuristics. (1) If a relevant program
snippet for an alarm A contains another buffer access, which corresponds to another
alarm B, then the alarm A and the alarm B are grouped together. (2) Two alarm groups
have common alarms, all the alarms in both alarm groups are grouped together. To
handle a group of alarms, the functions isFalseAlarm ∗ in Figure 3 is modified so that
the functions decide the satisfiability for each alarm in the group. Instead of stopping the
procedure and returning DONT KNOW for one alarm, the modified function checks
out the satisfiability of the rest of alarms. In the experimental section, we measure the
times spent in the filtering phase by using alarm grouping scheme.

4.3. Translation Rules
A subset of a C-like language with guarded assignments, as shown in Table 1, is

considered for the translation rules. A program variable v is renamed to vn where n
denotes the number of assignments made to the variable v prior to the given program
point. Although such renaming technique is similar to the static single assignment (SSA)
transformation, our transformation is different in that we do not need φ-functions during
our transformation. All the expressions we use have no side effects. The side effects
only occur at assignment statements. An assignment statement executes only when the
boolean expression in the guard can be satisfied. On the other hand, we use a quantifier-
free first-order logic as our target language.

Table 2 exhibits how we translate a source program snippet into its corresponding
target SMT formula. First, a sequence of statements is translated into a conjunction
of translations of sub-statements. Then, we classify assignments into two types: as-
signments with & operators and simple assignments. An assignment with & operator
generates formulae for the dereference of the l-value, while a simple assignment produces

10

〈exp〉 ::= 〈const〉
| 〈lval〉
| &〈lval〉
| −〈exp〉
| 〈exp〉1 opb 〈exp〉2

〈lval〉 ::= 〈var〉 | ∗〈var〉

〈stm〉 ::= 〈stm〉1; 〈stm〉2
| 〈bexp〉 → 〈lval〉 := 〈exp〉
| assume 〈bexp〉

Table 1: Source language

formulae for the l-value itself. Guarded assignments can be easily translated by using
implications. In this paper, we do not consider interprocedural analysis for the filtering
phase. Although we ignore function calls in the filtering phase, we can make use of the
information from the prior buffer overflow analysis phase. That means we can have the
upper and lower bounds of a procedure, when its return value is of scalar type. We also
assume statements, which have live-in variables inside, encode the information about
the live-in variables from the prior buffer overflow analysis and generate approximated
formulae for the SMT solver.

Simple variable accesses are translated by using the naming function N . The naming
function N returns a unique identifier if the variable name passed onto the function is
never used before. Otherwise, the identifier associated with the variable name is returned.
Pointer dereferences are translated with the uninterpreted function d. The uninterpreted
function d represents a dereference of its associated l-value, and the uninterpreted func-
tion d itself is an element of our SMT formulae. For example, a source program, p = &x;
y = *p, is translated into d(p) = idx∧idy = d(p) where idx and idy are unique identifiers
for variable x and y. This translated formula can be used to infer idx = idy. Unary oper-
ators and binary operators are translated into corresponding operators in Yices, the SMT
solver we use. Although Yices does not directly support integer division and remainder
operations, we are able to translate such expressions by using integer multiplication; for
example, x = y/z can be translated into (x = q) ∧ (y = z ∗ q + r) ∧ (0 ≤ r < z) where r
and q are new integer variables.

4.4. Translation of Function Calls
In the false alarm filtering phase, we take care of function calls within program snip-

pets with a different scheme from simple statements. One option would be to employ
powerful interprocedural analysis and apply symbolic execution to the body of the func-
tion. This scheme would incur too much overhead for our filtering analysis. Thus, our
filtering analysis does not resort to a complex interprocedural analysis. Instead, we re-
trieve the summarized information of the procedure from Raccoon, our first phase buffer

11

Source SMT Formula
Tlval(v) where v ∈ 〈var〉 N(v)
Tlval(∗v) d(Tlval.base(v) + Tlval.offset(v))
Tlval.base(v) where v ∈ 〈pointer〉 N(v).base
Tlval.offset(v) N(v).offset
Tlval.length(v) N(v).length
Tlval.size(v) N(v).size

(a) Translation of L-values

Texp(c) where c ∈ 〈const〉 c
Texp(lv) where lv ∈ 〈lval〉 Tlval(lv)
Texp(− e) − Texp(e)
Texp(e1 opb e2) where opb ∈ {+,−, ∗} Texp(e1) opb Texp(e2)
Texp(e1 % e2) r
Texp(e1 / e2) q
Auxiliary formulae for % and / d = Texp(e2) ∧ (Texp(e1) = d ∗ q + r) ∧ (0 ≤ r < d)

where d, r, and q are new
Texp.base(str) where str ∈ 〈string〉 base(str)
Texp.offset(str) 0
Texp.length(str) length(str)
Texp.size(str) length(str) + 1
Texp.base(arr) where arr ∈ 〈array〉 N(arr).base
Texp.offset(arr) 0
Texp.length(arr) N(arr).length
Texp.size(arr) sizeof(arr)
Texp.base(lv + e) where lv ∈ 〈pointer〉 Tlval.base(lv)
Texp.offset(lv + e) Tlval.offset(lv) + Texp(e) ∗ unitsize(lv)
Texp.length(lv + e) Tlval.length(lv)
Texp.size(lv + e) Tlval.size(lv)

(b) Translation of Expressions

Tstm(s1; s2) Tstm(s1) ∧ Tstm(s2)
Tstm(g → lv1 := &lv2) g ⇒ (Texp(∗lv1) = Texp(lv2))
Tstm(g → lv := e) g ⇒ (Tlval(lv) = Texp(e))
Tstm(g → lv := e) g ⇒ (Tlval.base(lv) = Texp.base(e)
where lv ∈ 〈pointer〉 ∧ Tlval.offset(lv) = Texp.offset(e)

∧ Tlval.length(lv) = Texp.length(e)
∧ Tlval.size(lv) = Texp.size(e))

Tstm(assume b) b

(c) Translation of Statements

Table 2: Translation rules for expressions and statements

12

overflow analysis. When we encounter a function call during the program slicing, we
produce assumptions on the affected global variables in forms of SMT formulae. We also
produce an assumption on the return value of the function by importing the analysis
results from the first phase buffer overflow analysis.

When we transform an unrolled program snippet to a more manageable form for the
SMT translation, we perform the transformation of the call sites first. The transformation
needed for a call site is to insert assignments to global variables. Assume, for an example,
a function foo() and its subsequent functions called inside use a global variable g the
type of which is integer. Then, we place an assignment to that global variable g after
the call site foo() to reflect the change made from the function call.

assume (from foo@1 g >= min and from foo@1 g <= max);
g:=from foo@1 g

In the above formula, from foo@1 g is a unique temporary variable that is supposed
to hold the value of g when foo() returns. Two values, min and max, represent the
minimal and maximal value of from foo@1 g, respectively. These values are available
from the first phase of buffer overflow analysis. If a procedure call has a parameter of
pointer type, the dereference of this parameter also has to be updated after the call site.
For instance, a call site foo(p) has a parameter p and the type of p is a pointer to an
integer value. Then, we need to add an update assignment to p after the call site, foo().

If the return value of a call is assigned to a variable, an additional transformation is
applied. For example, if a call site assigns its return value to a variable v, as in v:=foo(),
the assignment is transformed to:

assume (foo@1 ret >= min and foo@1 ret <= max);
v:=foo@1 ret

In the above formula, foo@1 ret is a unique temporary variable that is expected to hold
the return value of foo(). The two values, min and max, represent the minimal and
maximal return value, respectively. These values are also available from the first phase
of our buffer overflow analysis.

5. Experimental Results

In our experiment, we investigate all the alarms of the target programs in order to
measure the effectiveness and limitation of our filtering scheme. We first analyze the
target programs with Raccoon, our first phase analyzer. In the second phase, for each
buffer overflow alarm, the relevant program snippet containing the alarm is extracted,
and the alarms sharing the same relevant program snippet are grouped together. For
each program snippet, it is automatically translated into SMT formulae according to the
translation rules described in Section 4.

We use Raccoon [11] as the base buffer overflow analyzer and Yices 1.0.16 [2] as the
SMT solver for symbolic execution. Thanks to SWIG [1], we are able to connect Yices
C API with Raccoon’s OCaml code without too much difficulty. Yices API includes
dynamic features such as storing current state, dynamically adding new assertions, and
rollbacking to a certain point. With such functionality, we are able to efficiently imple-
ment our loop execution algorithm shown in Figure 3. Our experiments are performed
on a PC with two 2.33 GHz quad-core XEON processors and 8 GB of memory.

13

Target Reason
BIND-1 A size argument of memcpy is not checked.
BIND-2 A negative argument to memcpy underflows to large positive int.
BIND-3 A size argument of memcpy is not checked.
BIND-4 Unchecked sprintf calls.
SM-1 The upper bound is incremented for ’>’ but not decremented for ’<’.
SM-2 gecos field copied into fixed-size buffer without size check.
SM-3 A pointer to a buffer is not reset to the beginning at the end of a line.
SM-4 A typo prevents a size check from being performed.
SM-5 An input byte, 0xff, is erroneously cast to -1, an error code.
SM-6 Negative indexes passe size check but cause underflow.
SM-7 A size argument of strncpy is read from a packet header but not checked.
FTP-1 Several strcpy calls without bounds checks.
FTP-2 A wrong size check inside if. > should really be >=.
FTP-3 Unchecked strcpy and strcat calls.

Table 3: Known vulnerabilities in target programs

5.1. Target Benchmarks
For evaluation purpose, we use a set of programs introduced in [20]. The set of

programs reproduces the buffer overflow vulnerabilities which are found in the earlier
versions of three open source applications: bind, sendmail, and wu-ftpd. Instead of whole
source programs, the reproduced programs contain only the related functions within a
file, but if multiple types of vulnerabilities exist, separate files contain source code for
each type of vulnerability. Table 3 shows the four target programs from bind, seven target
programs from sendmail, and three target programs from wu-ftpd. It also describes the
source of buffer overflow vulnerabilities in each target program.

Applying interprocedural analyses, our first phase analysis can handle large C pro-
grams within tens of minutes [11]. Meanwhile, the second phase applies an intra-
procedural analysis to filter out the alarms from the first phase. That means our filtering
scheme works within procedure boundaries. Thus, applying our filtering scheme to the
target programs, which reproduce the original bugs of the real-world applications in small
sized programs, is a valid approach to evaluate our second phase, the intra-procedural
filtering scheme. When we extract relevant program snippets, we limit ourselves to the
boundaries of procedures. Thus, the size of the whole source code rarely matters. Even
if the target programs are small, they are enough to show the capability of our alarm
filtering scheme.

The vulnerability reproduced in BIND-1 and BIND-3 is related to memcpy. If this
function is invoked with a size argument larger than the size of the target buffer, a buffer
overflow occurs. In BIND-2, a negative size argument for memcpy can underflow to a large
positive value, which again causes a buffer overflow in the target buffer. In BIND-4, the
sprintf function can make the target string longer and overflow the target buffer which
is provided to store the generated string.

SM-1 changes the position of pointer, which points to the upper bound of the target
buffer, according to the input character stream. Correct code should decrease the upper
bound on ’<’ input and increase the upper bound on ’>’ input, but SM-1 does not
perform decreasing operations for ’<’ input. As a result, the pointer to the upper bound
mistakenly points to a wrong place. In SM-2, strcpy read the source string from a file

14

Target Category # Groups # Alarms

BIND-1 False positives 1 29
Library calls - 1

BIND-2 False positives 1 35
Library calls - 1

BIND-3 False positives 1 1
Library calls - 1

BIND-4 False positives 1 1
Library calls - 1

SM-1 Time out 1 28
SM-2 Possible overflows 2 2

Interprocedural 4 4
Library calls - 5

SM-3 Interprocedural 3 3
SM-4 Time out 1 7
SM-5 Interprocedural 3 2

Integer overflows 4 4
Library calls - 1

SM-6 Integer overflows 1 1
SM-7 False positives 2 20

Possible overflows 1 2
Interprocedural 2 17
Library calls - 3

FTP-1 False positives 1 1
Library calls - 6

FTP-2 False positives 1 1
Library calls - 5

FTP-3 False positives 1 1
Library calls - 23

Table 4: Categorization of buffer-overflow alarm groups

but its size can be longer than the size of the target buffer. In SM-3, a pointer to the
output buffer should be initialized at the end of line so that it points to the beginning
of the target buffer again, but the code fails to do so. Thus, the pointer only increases
without reset and makes the output buffer overflow after reading more than MAXLINE
bytes from a file. In SM-4, a necessary size check is not performed due to a typo, which
instead causes a fault in the size check expression. In SM-5, when an input byte, 0xff, is
copied into a signed char variable, it is evaluated as -1 meaning an internal error code
(NOCHAR); a multiple inputs of 0xff can cause buffer overflows. In SM-6, when an
unsigned integer value is copied into the signed index variable, it can be evaluated as
a negative value via integer overflows; negative values silently pass the size check and
cause buffer underflows. In SM-7, strncpy read the size argument from a packet header
and the read value can be larger than the size of the target buffer.

In FTP-1 and FTP-3, strcpy and strcat is called without checking the size of source
string. As a result, these calls can overflow the target buffers if the size of source is larger
than that of target. In FTP-2, a mistakenly coded size check can cause a buffer overflow
in strcat. This size check should have used ’>=’ instead of ’>’ in its comparison
expression.

Table 4 classifies the alarm groups into five categories. The first column shows the

15

CIL # False # Filtering # Filtered Raccoon Filtering
Target

Lines
Alarms

Alarms Groups Alarms Time Time
BIND-1 806 30 29 1 29 0.05s 584.95s
BIND-2 999 36 35 1 35 0.10s 1816.44s
BIND-3 225 2 1 1 1 0.01s 90.78s
BIND-4 356 3 1 1 1 0.02s 0.01s
SM-1 541 28 0 1 0 0.14s Time Out
SM-2 354 11 7 6 0 0.02s 0.10s
SM-3 392 3 0 3 0 0.01s 0.03s
SM-4 426 7 0 1 0 0.01s Time Out
SM-5 480 7 4 6 0 0.04s N/A
SM-6 188 1 0 1 0 0.01s N/A
SM-7 752 42 40 4 20 0.05s 3.03s
FTP-1 220 7 3 1 1 0.01s 0.01s
FTP-2 625 6 4 1 1 0.12s 0.21s
FTP-3 402 24 6 1 1 0.02s 0.07s

Total 6766 207 130 29 89 0.61s

Table 5: Effect of alarm filtering: our filtering method removes 68% of false alarms on
average.

names of target programs, and the second column shows the names of categories. The
third and the fourth columns show the total number of alarm groups and the total number
alarms in each category, respectively. If our filtering scheme proves the condition of the
alarms are not feasible, we categorize them into false positives. If our scheme cannot prove
the alarms are false, we categorize them into possible overflows. When we extract the
relevant program snippet, we could reach the beginning of the procedure without finding
the point where the buffer access is safe. In this case, we need not to proceed further and
categorize these alarms into interprocedural since we may need interprocedural filtering
analysis for them. For some program snippets, our filtering scheme takes too long or
consumes too much space due to their complex iteration structures and control flows.
In this case, our filtering scheme bails out without finishing the symbolic execution.
We categorize these alarms into time-out. In addition, we do not consider the buffer
overflow alarms occurred in C library calls such as strcpy and memcpy. Currently,
our analysis cannot handle the alarms originated from the library functions with two
buffers, yet. For these alarms, we categorize them together into library calls. For these
alarms, we need not to extract and group program snippets. Thus, the number of
groups in Table 4 is not specified at all. Finally, since our analysis does not model
integer overflows/underflows, our filtering scheme cannot handle the cases where integer
overflows are the causes of buffer overflows. We categorize such alarms into integer
overflows. Among all the categories, only the alarms in the false positives category can
be filtered out with our filtering analysis.

Table 5 summarizes the experimental results with a set of target programs which are
reproduced from three open source programs with intentional code vulnerabilities. The
first column shows the names of programs. The second column shows the number of
source lines of code after we translated the programs into CIL code. To present various
code vulnerabilities, parts of three well-known open source programs are implemented
under different program names. The lines of code range about 200–1000 lines. The

16

columns labeled # Alarms and # False Alarms show the total number of alarms reported
by our buffer overflow analyzer and the total number of false positives manually identified
by close inspection, respectively. The columns labeled # Filtering Groups shows the
number of the relevant program snippets after grouping program snippets. The column
labeled # Filtered Alarms shows the number of alarms that can be filtered out by our
filtering analysis. The last two columns show the analysis times of Racoon, the first
phase buffer overflow analysis, and Yices SMT solver, the second phase alarm filtering
analysis. The detailed discussion is presented for each program in the following sections.

5.2. Evaluation of Bind
In the target programs reproduced from bind, we are able to filter out all of 66

false alarms. The false alarms in the bind programs are originated from our fast buffer
overflow analysis. In BIND-1 case, the first buffer overflow alarm occurs at a loop which
involves two pointer variables. Static analyses based on abstract interpretation often
employ widening and narrowing techniques to analyze loops efficiently and guarantee
their termination. During the first phase analysis, both pointer variables are widened,
but only the one pointer variable involved in the loop condition is narrowed. Although
relational analyses such as [13] can recover the information for the other pointer variable
from the relationship to the pointer variable in the loop condition, we cannot afford
to accommodate such complex analyses within our first phase analysis. Since our first
phase analysis is designed to verify the majority of simple parts of code as fast as possible,
we rather employ a fast and light-weighted buffer overflow analysis. The inaccuracy of
our fast analysis is actually the origins of the rest 28 alarms in BIND-1. Analyzing
the relevant program snippet by our filtering algorithm, we are able to prove all buffer
overflow alarms are false positives. The origins of the false alarms in BIND-2, BIND-3,
and BIND-4 cases are similar.

The filtering times for BIND-1 and BIND-2 cases are much longer than other cases.
The relevant program snippets for BIND-1 and BIND-2 cases span through a sequence
of multiple loops. Since our filtering scheme unrolls loops and explores all the possible
execution paths, multiple loops usually incur a long analysis time for the symbolic ex-
ecution in SMT solver. On the other hand, the relevant program snippets for BIND-3
and BIND-4 cases contain only one loop. The case in BIND-3 unrolls its loop 10,000
times until the filter analysis proves it is a false positive. Meanwhile, the case in BIND-4
unrolls its loop only once to prove.

The analysis times for BIND-1, BIND-2, and BIND-3 is relatively high. It suggests
that the current implementation of our filtering analysis is not optimized sufficiently. One
of possible reasons is that the number of SMT variables in the automatic translation tends
to be large. Excessive variable usages surely deteriorate the performance of SMT solver,
particularly when such fragment of SMT formulae reused thousands of times within loops.

5.3. Evaluation of Sendmail
In the target programs reproduced from sendmail, our filtering scheme is unsuccessful

in filtering out false alarms except SM-7. In SM-1 case, 28 alarms are grouped together
into one filtering group, resulting in the relevant program snippet which consists of 428
lines of CIL code. The current implementation of our filtering algorithm fails to finish
the proof within reasonable time bound due to the complex control flows of the program

17

snippet. In SM-2 case, our filtering scheme fails to prove any alarms, the seven of which
are actually false. For four filtering groups, we fails to find that buffer accesses are
safe even at the beginning of the procedure. Thus, our scheme skips the four filtering
groups. The relevant program snippet for one group contains nested loops. Our filtering
algorithm does not unroll an inner loop but adopts the analysis results from Raccoon.
Still, at the end of the symbolic execution, our analysis cannot prove this alarm is false. In
SM-3 case, the condition for the output buffer access is still unsafe even at the beginning
of the procedure due to the imprecise analysis result from Raccoon. Thus, our filtering
algorithm skips those three alarms. As for SM-4 case, we encounter an infinite loop
within our symbolic execution since the termination condition of that loop is determined
by a user input. Since we set the time bound for the SMT solver, our symbolic execution
bails out after a predefined threshold time. When a loop termination is decided by input
values, our filtering scheme assumes all the range of possible values according to the
variable type. Thus, it incurs too many possible execution paths to handle within the
time bound.

In SM-5 and SM-6 case, real buffer underflows occur by integer overflows. In SM-5
case, the special input character, 0xff, is copied into a signed variable and the value is
evaluated to -1 which is an internal control code (NOCHAR). Such unexpected conversion
breaks the input algorithm and it is possible to overflow the input buffer with multiple
inputs of 0xff. In SM-6 case, a large positive number of unsigned type is copied into a
signed index variable. This may also result in a negative number by integer overflows.
If a negative number is used as an array index, it would cause a real buffer underflow.
Our filtering analysis is not capable of handling integer overflows yet. Even though our
buffer overflow analyzer detects the exact overflow points, our filtering analysis cannot
handle them.

In SM-7 case, we are able to filter out 20 false alarms from two filtering groups. The
removed false alarms are similar to those in BIND-1. Two related variables are involved
in a loop and only one is narrowed in our buffer overflow analysis, but the symbolic
execution based on SMT solver proves those alarms are false positives. Some false alarms
still cannot be removed with our filtering scheme. They need an interprocedural scheme
to filter out, but our filtering scheme works within procedure boundaries. For any live-in
variables from outside the procedure, it relies on the analysis results from the first phase.
Due to the imprecise analysis results of Raccoon around the function boundaries, our
symbolic execution cannot filer out some of those false alarms.

5.4. Evaluation of Wu-ftpd
In FTP-1 case, a pointer is conditionally increased by one byte. If we employed a

path sensitive analysis, we would have excluded such false alarm in the first phase. The
analysis time required in such analysis, however, would be much longer than our SMT
solver based filtering scheme. On the other hand, our symbolic execution with SMT solver
filters out the false alarm within a second. Similarly to FTP-1, a pointer is conditionally
decreased in FTP-2 case. Without a path sensitive analysis, our first phase reports an
alarm for this access, but this is actually a false positive. Our filtering algorithm removed
this false alarm by handling the loop precisely. In FTP-3 case, the alarm detected by the
first phase is a similar case to BIND-1, where two pointer variables are involved within
a loop. This alarm is filtered out by the second phase symbolic execution as in BIND-1
case.

18

6. Related Work

Unlike our false-alarm filtering method relying on symbolic execution, false-alarm
filtering based on abstract interpretation is also possible as reported by Rival [15]. Rival’s
method essentially calculates the intersection of two kinds of abstract data, one computed
by usual forward abstract interpretation and the other one computed by performing
backward abstract interpretation starting from the alarm program point with the initial
condition to be the alarm condition. If this intersection is empty at an alarm program
point, it can be said that the alarm is false. Although it is interesting to see how abstract
interpretation can remedy its weakness such as false alarms on its own, backward abstract
interpretation shares the common weakness of abstract interpretation, i.e., precision loss.
Therefore, the false-alarm filtering with capability of backward abstract interpretation
may not exceed the capability of symbolic execution.

Indeed, to compensate for this precision loss, Rival proposed to constrain an execution
pattern and input when backward abstract interpretation fails to determine the falsity
of an alarm. While Rival left the automation of this constraint as future work, Gulavani
and Rajamani proposed a method that can automatically constrain an execution pattern
into limited forms [9]. They focused on restricting an execution pattern of a loop so that
widening can be performed after a few iterations of the loop body. It is well-known that
widening is a major cause of precision loss, and precision is sometimes improved by defer-
ring widening. Their method automatically detects the widening operation that causes
a false alarm, and defers this widening. While their method can filter out some of false
alarms reported due to too early widening, it was also pointed out by the authors that
their method has the following limitations. First, widening is not monotonic. Therefore,
precision at some cases deteriorates after deferring widening operation on the contrary
to one’s expectation. Second, widening deferment should be repeated until the falsity of
an alarm can be determined, and this repetition is not guaranteed to terminate.

In comparison to the above abstract-interpretation-based methods, symbolic execu-
tion simply considers all the feasible executions and input. Despite its relatively high
overhead, the empirical results of our own demonstrates that computer hardware and
supportive tools such as SMT solvers are mature enough to apply symbolic execution to
small program regions around alarm points to filter out false alarms.

As mentioned earlier, we do not aim to determine the truth of alarms. However, note
that it is possible to identify true alarms if we apply symbolic execution to a program
snippet between the beginning of a program and the alarm point. Indeed, the Erez’s
true-alarm detecting method [7] performs backward symbolic execution, that is, weakest
precondition generation, and checks if the weakest precondition at the beginning of a
program is satisfiable to determine the truth of the alarm. We opt for investigating small
program regions through symbolic execution, because we believe that it is more helpful
to filter out as much false alarms as possible at the soonest possible time than to assert
that some alarms are true. Once an alarm list of reasonable length is ready, the truth of
each alarm can be determined with the help of other methods specialized for it such as
model checking.

On the other hand, there are some statistical approaches to show alarms most likely
to be real errors over those that are least likely. Z-ranking [12] is a statistical technique
to rank alarms from most to least probable based on frequency counts of successful
and failed checks. The basic idea is that an always fail case is highly likely to be a

19

false positive, so many successful checks and a few failures lead to high ranking. They
applied z-ranking to lock errors, free errors, and string format errors. Airac [10] adopts
a Baysian approach to rank alarms based on the predefined set of symptoms, which
describe the analyzer’s internal behaviors and the input programs’ syntactic contexts.
Each alarm is characterized by a set of symptoms and the user’s judgment about an
alarm automatically adjusts the probabilistic influence of each symptom. After a certain
number of training judgments, the system is able to decide the probability of a new alarm
based on symptoms. Airac’s Baysian approach is designed for buffer overflow analysis,
and we believe that z-ranking can be extended for buffer overflow analysis. Since these
statistical approaches are orthogonal to ours, they can be integrated into our system for
more useful results.

7. Conclusion

Static verification tools based on sound analysis techniques often suffer from the
false alarm problem. Although the more precise analysis generally results in fewer false
alarms, the cost to perform such precise analysis is often too high to be practical for large
software. After investigating several open source programs, we notice that large parts of
the code can be verified with relatively imprecise analysis and only small fragments of
the code actually need expensive but precise analysis.

In this article, we present our two phase analysis technique to detect buffer overflow
defects. Our first analyzer, Raccoon is able to finish three analyses within a few hundreds
of seconds for ten thousand lines of code from several open source programs and to prove
that about half of array and pointer accesses are safe. Taking advantages of a state-
of-the-art SMT solver, our second phase performs more precise analysis on a program
snippet which triggers a buffer overflow alarm in the first phase.

We have implemented our symbolic execution scheme for alarm filtering using Yices
and show that our filtering method can effectively remove a considerable number of false
alarms. Our experiment with the multiple cases, which are reproduced from three open
source programs, shows that our filtering method can reduce 68% of false alarms on
average. In addition to that, we investigate each case in detail and provide our insight
on the cases where our filtering scheme successfully works and also the cases it fails to
filter out.

Acknowledgement

This research was supported by the Korea Research Foundation Grant funded by the
Korean Government (MEST, Basic Research Promotion Fund, KRF-2007-331-D00427).

References

[1] Simplified Wrapper and Interface Generation, http://www.swig.org/.
[2] Yices: An SMT Solver, http://yices.csl.sri.com/.
[3] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs

by construction or approximation of fixpoints, in: POPL, 1977, pp. 238–252.
[4] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among variables of a program,

in: POPL, 1978, pp. 84–96.

20

[5] M. Das, Unification-based pointer analysis with directional assignments, in: PLDI, 2000, pp. 35–46.
[6] N. Dor, M. Rodeh, S. Sagiv, Cssv: towards a realistic tool for statically detecting all buffer overflows

in c, in: PLDI, 2003, pp. 155–167.
[7] G. Erez, Generating concrete counterexamples for sound abstract interpretation, Master’s thesis,

Tel-Aviv University, Israel (2004).
[8] D. Evans, D. Larochelle, Improving security using extensible lightweight static analysis, IEEE

Software 19 (1) (2002) 42–51.
[9] B. S. Gulavani, S. K. Rajamani, Counterexample driven refinement for abstract interpretation, in:

Proceedings of the 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06), vol. 3920 of LNCS, Springer, 2006, pp. 474–488.

[10] Y. Jung, J. Kim, J. Shin, K. Yi, Taming false alarms from a domain-unaware c analyzer by a
bayesian statistical post analysis, in: SAS, 2005, pp. 203–217.

[11] Y. Kim, J. Jeon, H. Han, Development of cost-effective buffer overrun analyzer, KIISE SIGPL
Transactions on Programming Languages 19 (2) (2005) 1–9.

[12] T. Kremenek, D. R. Engler, Z-ranking: Using statistical analysis to counter the impact of static
analysis approximations, in: SAS, 2003, pp. 295–315.

[13] A. Miné, A new numerical abstract domain based on difference-bound matrices, in:
Proc. of the 2d Symp. on Programs as Data Objects (PADO II), vol. 2053 of Lec-
ture Notes in Computer Science, Springer, Aarhus, Danemark, 2001, pp. 155–172,
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf.

[14] G. C. Necula, S. McPeak, S. P. Rahul, W. Weimer, Cil: Intermediate language and tools for analysis
and transformation of c programs, in: CC, 2002, pp. 213–228.

[15] X. Rival, Understanding the origin of alarms in astrée, in: Proceedings of the Second International
Symposium on Static Analysis (SAS’05), vol. 3672 of LNCS, Springer, 2005, pp. 303–319.

[16] A. Venet, G. P. Brat, Precise and efficient static array bound checking for large embedded c pro-
grams, in: PLDI, 2004, pp. 231–242.

[17] D. Wagner, J. S. Foster, E. A. Brewer, A. Aiken, A first step towards automated detection of buffer
overrun vulnerabilities, in: NDSS, 2000, pp. 3–17.

[18] M. Weiser, Program slicing, in: ICSE, 1981, pp. 439–449.
[19] Y. Xie, A. Chou, D. R. Engler, Archer: using symbolic, path-sensitive analysis to detect memory

access errors, in: ESEC / SIGSOFT FSE, 2003, pp. 327–336.
[20] M. Zitser, R. Lippmann, T. Leek, Testing static analysis tools using exploitable buffer overflows

from open source code, in: R. N. Taylor, M. B. Dwyer (eds.), SIGSOFT FSE, ACM, 2004, pp.
97–106.

21

